Real-World Experience with IGCC – Lessons Learned in Design, Permitting, Operations and Maintenance

Steve Jenkins
URS Corporation
August 17, 2005

Background

- ➤ Born in California!
- > 30 years in Power Industry
- > 25 years with Tampa Electric Company
- Former Deputy Project Manager, Polk Power Station IGCC Project

Thanks!

- Mark Hornick General Manager Polk Power Station
- ➤ John McDaniel Sr. Engineering Fellow Polk Power Station
 - Worked on Cool Water IGCC project

Tampa Electric Company

- Mid-sized utility in west-central Florida
- About 4,400 MW total generating capacity
- ➤ 600,000 customers
- Decision to use coal in 1959 when the company could not get long-term contracts for oil from Middle East
- Set up coal transportation system
 - Mississippi River barges
 - Terminal on the Mississippi delta
 - Ocean-going ships to deliver coal to Tampa and back-haul fertilizer from central Florida

Coal Delivery System

Tampa Electric Company

- > Three power plants
 - Hookers Point: small oil-fired units installed after WWII
 - Gannon Station: coal-fired units (1958-1968)
 - Big Bend Station: coal-fired units (1970-1985)
- Commitment to coal generation was ~97% coal-fired
- Commitment to environmental performance first FGD system in U.S. designed to produce commercial grade gypsum for wallboard

Why IGCC?

- Early 1990s was start of transition of power industry
- Company recognized need for new base-load generation by the mid-1990s
- Formed 17-member citizen site selection committee to choose site and technology
- Competition for development of new base-load units by IPPs, but through use of quick-build combined cycle units and natural gas
- > How to preserve commitment to low-cost coal?

Why IGCC?

- DOE Clean Coal Technology Program
- Offered co-funding for new coal-based technology

- Opportunity to build new generation, continue commitment to low-cost coal, and demonstrate state-of-the-art technology
- Tampa Electric submitted application and was selected

Polk Power Station

Site Selection Committee chose site in central Florida, previously mined for phosphate

"Moonscape" reclaimed into power plant site

and 800-acre cooling reservoir

Original Site Plan

Polk Power Station

Design Basis

- > 250 MW (net)
- > 2,500 tons/day of coal
 - Pittsburgh #8 coal for performance
 - Illinois # 6 coal for sulfur level
 - Coal is trucked 30 miles from Big Bend Station
- Removal and recovery of sulfur compounds as sulfuric acid
- Beneficial use of slag for use in making cement
- > 800 acre cooling reservoir
- Zero process water discharge

Permitting Issues

- Agencies had experience with coal-fired units, but mainly during 1970s and 80s
- Florida DEP and US EPA staff very familiar with gas-fired combined cycle units
- ➤ IGCC is it gas or is it coal?
- Answer from Florida DEP YES!
 - Permit the plant for least environmental impact
 - But no long-term history of IGCC permits
 - SO₂ emission limit same as best coal-fired unit
 - NOx emissions go with diluent injection, but re-do NOx limit after DOE demonstration period and leave room for NOx controls (SCR)

Start-up and Initial Operation

- > IGCC Specialists
 - 5 teams of 10, all with journeyman level skills
 - Responsible for operation and maintenance
 - No front-line supervisor
- > IGCC simulator used for training
- ➤ Total plant staff of 78
 - O&M, engineering, and administrative

Start-up and Initial Operation

- Started up combined cycle power block on No. 2 oil in late spring 1996
- First syngas produced in July 1996
- First syngas to combustion turbine in September 1996
- Two-year DOE demonstration program

Start-up

- Long start-up from "cold" conditions not much different from coal-fired unit
- Air Separation Unit (cryogenic) takes several days to cool down - significant power consumption
- ➤ 30-36 hours to heat up gasifier and gasification train, using propane gas
 - Refractory must heat up slowly to prevent cracking
- ➤ 10-15 minutes after slurry introduced to get to full pressure
- Then 1-2 hours to heat up rest of gasification system and syngas piping to combustion turbine
- Syngas is flared instead of using it to make power

Start-up and Year 1 of Operation

- Start-up challenges and problems not too different from coal-fired units or gas-fired combined cycle units
- Many little things contributed to lower than expected availability, but problems were not attributable to the basic IGCC technology
 - Piping erosion/corrosion
 - Ash pluggage in syngas coolers
- ➤ Power block problems with failed bolts in combustion turbine 3rd stage, and in combustors
 - Solved as Tampa Electric and GE became more experienced with syngas operation
- ➤ Many "nuisance" shutdowns

- Particulate matter damage to combustion turbine solved with syngas filter
- Start-up refractory replaced after only 1 year
- Sulfur removal not as high as expected on some sulfur compounds
 - Temporary switch to lower sulfur coals
 - Solved with system upgrade
- Plant staff learned how to do faster "hot" starts to reduce time and power consumption

Syngas Cooler Pluggage

- > Plugging in syngas coolers from ash deposition
 - Design of cooler entrance
 - Changes in ash characteristics of coals being tested

- Transition from working hard just to stay on line, to finding ways to improve performance
- Longest uninterrupted period of power generation from the combustion turbine: 52 days
 - 16 transfers between syngas and No. 2 oil
- Longest uninterrupted gasifier run: 37 days (improved burner)
- Gasifier refractory life: 451 days operation
 - Lasted over 2 years, with 73 gasifier startups on 10 different fuels or fuel blends
- Lowest generation cost in Tampa Electric fleet— first unit dispatched
- Continued ash pluggage problems
- > Problems with unconverted carbon in slag

Carbon in Slag

Contractor brought on site to screen carbon from slag

High carbon material trucked to Big Bend to mix with the coal

- Gasification plant operating much better
 - Many nuisance problems solved
 - Faster start-ups
 - Fewer corrosion and pluggage problems
 - Feedstock flexibility (petroleum coke)
- Failure of Air Separation Unit main air compressor 1 month outage
- > Air permit required re-look at NOx controls/limit
 - State agency wanted retrofit of SCR
 - SCR not proven on IGCC
 - GE refined system for syngas saturation to achieve 15 ppm
 - Continued discussions with FDEP and EPA

- Relative fuel prices
 - Pet coke = 1.0
 - Coal = 1.5
 - Natural gas = 4.3
 - No. 2 oil = 4.5
- Commitment to coal shows IGCC to be a smart choice

- NOx emission limit issue resolved by using syngas saturator, achieving 15 ppm
- > Carbon in slag problem solved with new slag screen
- But problems with power block (not syngas related)
 - Both generators rewound
 - GE notifies Tampa Electric of combustion turbine rotor problem replaced

- Best year ever!
- Much better performance overall
- > 82% on-stream factor for gasification
- > 96% availability for power block
- > 99+% availability on-peak
- ➤ Using 55% pet coke/45% coal

- Overall IGCC performance greatly improved
- > Faster start-ups with less use of parasitic power
- Using pet coke/Venezuelan coal blend
 - Low cost
 - Good ash characteristics
- But combustion turbine air compressor failed in January – not syngas related
 - 100-day outage
 - Time for other improvements
 - Modification to take extraction air from combustion turbine, which will increase overall power output

KEY AVAILABILITY STATISTICS

Average for coal-fired units is 87%

Environmental Performance

- $> SO_2 \sim 98\%$ removal
- NOx syngas saturation achieves 15 ppm
- ➤ Reduced CO₂ emissions
- Ready market for sale of sulfuric acid
 - Sold to local phosphate industry and municipal water treatment plants
- > Slag beneficial use in making cement
- Low water consumption
- > Zero process water discharge

Polk Power Station History

- > First 3 years were the toughest
- Many design and operation improvements
- High availability achieved close to goal and getting better
- Continuous environmental performance enhancements, with sale of by-products
- Experience on 20 feedstocks provides opportunities for lowering cost of electricity

Transfer of Lessons Learned

- Significant improvements in IGCC design, equipment layout, materials of construction, performance, heat rate, start-up procedures
- Experiences and improvements from Polk Power Station made available to EPRI CoalFleet program
- Next generation of IGCC plants will benefit from Polk Power Station's 9 years of experience
 - Lower cost
 - Better performance
 - Higher availability

Tampa Electric Company Polk Power Station

